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NONSTATIONARY HEAT TRANSFER IN A HOLLOW COMPOSITE CYLINDER

UDC 536.21V. V. Mel’nikov

Solution of a nonstationary heat-transfer problem for bounded end-conjugated hollow dissimilar cylin-
ders is presented. In the volume of the cylinders, time- and coordinate-dependent heat release of
known intensity takes place. The problem is solved using finite integral transformations over two
coordinates.

Key words: heat conduction equation, composite cylinder, finite integral transformation, bound-
ary conditions.

As opposed to the well-known stationary problem [1], here we treat a nonstationary heat-conduction problem
for a hollow composite cylinder with first-, second-, or third-kind heat-transfer conditions at the external boundaries
dependent both on time and coordinates. At the junction interface of the composite cylinder, an ideal thermal
contact (fourth-kind boundary conditions) is assumed. Next, we assume that in the volume of the constituent
cylinders time- and coordinate-dependent heat release takes place. The cylindrical coordinate system used in
the present consideration and the dimensions of the composite cylinder are shown in Fig. 1. The problem on
determination of the temperature field in the composite cylinder can be represented in the form of two heat
conduction equations, conditions posed at the external boundaries and at the interface between the cylinders, and
initial conditions.

Heat conduction equation:

1
χ1

∂T1

∂τ
=

∂2T1

∂r2
+

1
r

∂T1

∂r
+

∂2T1

∂z2
+

1
λ1

w1, a 6 r 6 b, c 6 z 6 d,

T1 = T1(τ, r, z);
(1)

1
χ2

∂T2

∂τ
=

∂2T2

∂r2
+

1
r

∂T2

∂r
+

∂2T2

∂z2
+

1
λ2

w2, a 6 r 6 b, d 6 z 6 e,

T2 = T2(τ, r, z);
(2)

boundary conditions (first-kind conditions):
— on the cylindrical surfaces,

T1

∣∣∣
r=a

= T1a(τ, z), T1

∣∣∣
r=b

= T1b(τ, z), T2

∣∣∣
r=a

= T2a(τ, z), T2

∣∣∣
r=b

= T2b(τ, z); (3)

— on the end surfaces of the cylinder,

T1

∣∣∣
z=c

= Tc(τ, r), T1

∣∣∣
z=d

= T2

∣∣∣
z=d

, λ1
∂T1

∂z

∣∣∣
z=d

= λ2
∂T2

∂z

∣∣∣
z=d

, T2

∣∣∣
z=e

= Te(τ, r); (4)

initial conditions:

T1

∣∣∣
τ=0

= T10(r, z), T2

∣∣∣
τ=0

= T20(r, z). (5)
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Fig. 1. Geometry of the composite cylinder.

Here T1 and T2 are the temperatures in the first and second cylinder, respectively, χ1 and χ2 are thermal diffusivities,
λ1 and λ2 are the heat-transfer coefficients, w1 and w2 are the rates of heat generation in the volumes of the cylinders,
τ is the time, r and z are the coordinates of the cylinders (radius and height), and a, b, c, d, and e are the geometric
characteristics of the cylinders (see Fig. 1).

We apply the following change of variables:

z =
√

χ1 y, r =
√

χ1 x at c 6 z 6 d, a 6 r 6 b,

z =
√

χ2 y, r =
√

χ2 x for d 6 z 6 e, a 6 r 6 b.
(6)

Then, relations (1)–(5) acquire the form

∂Z1

∂τ
=

∂2Z1

∂x2
+

1
x

∂Z1

∂x
+

∂2Z1

∂y2
+

χ1

λ1
w11, x1 6 x 6 x2, y1 6 y 6 y2,

Z1(τ, x, y) = T1(τ, r, z);
(7)

∂Z2

∂τ
=

∂2Z2

∂x2
+

1
x

∂Z2

∂x
+

∂2Z2

∂y2
+

χ2

λ2
w22, x3 6 x 6 x4, y3 6 y 6 y4,

Z2(τ, x, y) = T2(τ, r, z);
(8)

Z1

∣∣∣
x=x1

= T1a(τ, y), Z1

∣∣∣
x=x2

= T1b(τ, y), Z2

∣∣∣
x=x3

= T2a(τ, y), Z2

∣∣∣
x=x4

= T2b(τ, y); (9)

Z1

∣∣∣
y=y1

= Tc(τ, x), Z1

∣∣∣
y=y2

= Z2

∣∣∣
y=y3

,

b1
∂Z1

∂y

∣∣∣
y=y2

= b2
∂Z2

∂y

∣∣∣
y=y3

, Z2

∣∣∣
y=y4

= Te(τ, x);
(10)

Z1

∣∣∣
τ=0

= T10(x, y), Z2

∣∣∣
τ=0

= T20(x, y). (11)

Here y1 = c/
√

χ
1
, y2 = d/

√
χ

1
, y3 = d/

√
χ

2
, y4 = e/

√
χ

2
, x1 = a/

√
χ

1
, x2 = b/

√
χ

1
, x3 = a/

√
χ

2
, x4 = b/

√
χ

2
,

b1 = λ1/
√

χ
1
, b2 = λ2/

√
χ

1
, w11(τ, x, y) = w1(τ, r, z), and w22(τ, x, y) = w2(τ, r, z).
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To solve system (7)–(11), we define the integral transformation

Z(τ, x, s) = A1

y2∫
y1

Z1(τ, x, y)U1(sy) dy + A2

y4∫
y3

Z2(τ, x, y)U2(sy) dy, (12)

whose functions U1(sy) and U2(sy) satisfy the following equations and boundary conditions:

d2U1

dy2
+ s2U1 = 0 (y1 6 y 6 y2),

d2U2

dy2
+ s2U2 = 0 (y3 6 y 6 y4); (13)

U1

∣∣∣
y1

= 0, U1

∣∣∣
y2

= U2

∣∣∣
y3

, b1
dU1

dy

∣∣∣
y2

= b2
dU2

dy

∣∣∣
y3

, U2

∣∣∣
y4

= 0. (14)

The solutions of (13) are

U1(sy) = C1 sin sy + C2 cos sy, U2(sy) = C3 sin sy + C4 cos sy,

where C1, C2, C3, and C4 are arbitrary constants and s are characteristic numbers.
Conditions (14) yield the following system of equations

C1 sin sy1 + C2 cos sy1 = 0,

C1 sin sy2 + C2 cos sy2 − C3 sin sy3 − C4 cos sy3 = 0,

b1(C1 cos sy2 − C2 sin sy2) − b2(C3 cos sy3 − C2 sin sy3) = 0,
(15)

C3 sin sy4 + C4 cos sy4 = 0.

System (15) has a nontrivial solution iff the determinant of the system is zero. The latter condition yields the
following equation for the characteristic numbers s:∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣ = 0. (16)

Here a11 = sin sy1, a12 = cos sy1, a21 = sin sy2, a22 = cos sy2, a23 = − sin sy3, a24 = − cos sy3, a31 = b1 cos sy2,
a32 = −b1 sin sy2, a33 = −b2 cos sy3, a32 = b2 sin sy3, a43 = sin sy4, and a44 = cos sy4.

By means of rather simple transformations we eliminate the indefinite constants C2, C3, and C4 and obtain
the following expressions for the functions U1(sy) and U2(sy):

U1(sy) = C1(sin sy + f1 cos sy), U2(sy) = C1(f3 sin sy + f4 cos sy). (17)

The coefficients fi (i = 1, 3, 4) contain the quantities a11, a12, a21, . . . .
Integral transformation (12) and expressions (17) still contain indefinite constants A1, A2, and C1. The

values of A1 and A2 can be found from the orthogonality condition for the functions U1(sy) and U2(sy), and the
constant C1, from the condition of orthonormality of these functions.

Orthogonality of the functions implies that

y2∫
y1

U1(sy)U1(py) dy = 0 and

y4∫
y3

U2(sy)U2(py) dy = 0 for s 6= p;

these relations follow from the equality J = A1

y2∫
y1

U1(sy)U1(py) dy + A2

y4∫
y3

U2(sy)U2(py) dy = 0 and from boundary

conditions (14) for s 6= p, A1 = 1/b2, and A2 = 1/b1. Let us prove this statement.
Using Eqs. (13), we can write the quantity J as

J = −A1

p2

y2∫
y1

U1(sy)
d2U1

dy2
dy − A2

p2

y4∫
y3

U2(sy)
d2U2

dy2
dy.
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We integrate each of the two integrals by parts; this yields

J = −A1

p2

[
U1(sy)

dU1(py)
dy

∣∣∣y2

y1

− dU1(sy)
dy

U1(py)
∣∣∣y2

y1

+

y2∫
y1

d2U1(sy)
dy2

U1(py) dy
]

− A2

p2

[
U2(sy)

dU2(py)
dy

∣∣∣y4

y3

− dU2(sy)
dy

U2(py)
∣∣∣y4

y3

+

y4∫
y3

d2U2(sy)
dy2

U2(py) dy
]
.

We take conditions (14) into account and assume that A1 = 1/b2 and A2 = 1/b1; then, we obtain

J =
s2

b2p2

y2∫
y1

U1(sy)U1(py) dy +
s2

b1p2

y4∫
y3

U2(sy)U2(py) dy.

We compare the obtained expression for J with the initial expression

A1

p2

y2∫
y1

U1(sy)U1(py) dy +
A

p2

y4∫
y3

U2(sy)U2(py) dy =
s2

b2p2

y2∫
y1

U1(sy)U1(py) dy +
s2

b1p2

y4∫
y3

U2(sy)U2(py) dy,

and arrive at the conclusion that the last identity holds for s 6= p iff
y2∫

y1

U1(sy)U1(py) dy = 0,

y4∫
y3

U2(sy)U2(py) dy = 0.

Thus, orthogonality of U1(sy) and U2(sy) is proved and the values of A1 and A2 are found. We define the
coefficient C1 so that to make the indicated functions orthonormal:

A1

y2∫
y1

[U1(sy)]2 dy + A2

y4∫
y3

[U2(sy)]2 dy = 1

or

A1

y2∫
y1

[C1(sin sy + f1 cos sy)]2 dy + A2

y4∫
y3

[C1(f3 sin sy + f4 cos sy)]2 dy = 1.

It follows from this condition that C1 = 1/
√

I, where

I = A1

[
(1 + f2

1 )
y2 − y1

2
+

f2
1 − 1
4s

(sin 2sy2 − sin 2sy1) −
f1

2s
(cos 2sy2 − cos 2sy1)

]
+ A2

[
(f2

3 + f2
4 )

y4 − y3

2
+

f2
4 − f2

3

4s
(sin 2sy4 − sin 2sy3) −

f3f4

2s
(cos 2sy4 − cos 2sy3)

]
.

Thus, integral transformation (12) is defined.
We apply the integral transformation to Eqs. (7) and (8); this yields

A1

y2∫
y1

(∂Z1

∂τ
− ∂2Z1

∂x2
− 1

x

∂Z1

∂x
− ∂2Z1

∂y2
− χ1

λ1
w11

)
U1(sy) dy

+ A2

y4∫
y3

(∂Z2

∂τ
− ∂2Z2

∂x2
− 1

x

∂Z2

∂x
− ∂2Z2

∂y2
− χ2

λ2
w22

)
U2(sy) dy = 0. (18)

As a result, relation (18) assumes the form

∂Z

∂τ
=

∂2Z

∂x2
+

1
x

∂Z

∂x
− s2Z + FP1(τ, x, s) + FP2(τ, x, s), (19)
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where

FP1(τ, x, s) = A1
dU1

dy

∣∣∣
y1

Tc(τ, x) − A2
dU2

dy

∣∣∣
y4

Te(τ, x); (20)

FP2(τ, x, s) = A1
χ1

λ1

y2∫
y1

w11U1(sy) dy + A2
χ2

λ2

y4∫
y3

w22U2(sy) dy. (21)

By definition of integral transformation (12), Eq. (19) is valid in the intervals x1 6 x 6 x2 and x3 6 x 6 x4.
Let us find the solution of (19) in each of these intervals. To this end, we represent the conditions at the boundaries
x1, x2, x3, and x4 as

Z1

∣∣∣
x=x1

=

y2∫
y1

U1(sy)T1a(τ, y) dy, Z1

∣∣∣
x=x2

=

y2∫
y1

U1(sy)T1b(τ, y) dy,

Z2

∣∣∣
x=x3

=

y4∫
y3

U2(sy)T2a(τ, y) dy, Z2

∣∣∣
x=x4

=

y4∫
y3

U2(sy)T2b(τ, y) dy.

To solve the equation in the intervals x1 6 x 6 x2 and x3 6 x 6 x4, we define the integral transformations

Z1(τ, p, s) =

x2∫
x1

xZ(τ, x, s) V1(px) dx, Z2(τ, q, s) =

x4∫
x3

xZ(τ, x, s) V2(qx) dx, (22)

where V1(px) and V2(qx) are the solutions of the differential equations

d2V1

dx2
+

1
x

dV1

dx
+ p2V1 = 0,

d2V2

dx2
+

1
x

dV2

dx
+ q2V2 = 0 (23)

with the boundary conditions

V1

∣∣∣
x1

= 0, V1

∣∣∣
x2

= 0, V2

∣∣∣
x3

= 0, V2

∣∣∣
x4

= 0. (24)

The solutions of (23) have the form [2]

V1(px) = D1J0(px) + D2Y0(px), V2(qx) = D3J0(qx) + D4Y0(qx),

where D1, D2, D3, and D4 are arbitrary constants; J0(z) and Y0(z) are the zero-order Bessel functions of the first
and second kind; and p and q are the characteristic numbers.

Using the boundary conditions (24), we obtain the following two systems of equations:

D1J0(px1) + D2Y0(px1) = 0, D1J0(px2) + D2Y0(px2) = 0;

D3J0(qx3) + D4Y0(qx3) = 0. D3J0(qx4) + D4Y0(qx4) = 0
(25)

These systems have nontrivial solutions iff their determinants are zero. This yields two equations for the character-
istic numbers p and q: ∣∣∣∣ J0(px1) Y0(px1)

J0(px2) Y0(px2)

∣∣∣∣ = 0,

∣∣∣∣ J0(qx3) Y0(qx3)
J0(qx4) Y0(qx4)

∣∣∣∣ = 0. (26)

We eliminate the coefficients D2 and D4 out of the systems of (25) and obtain the following expressions
for V1(px) and V2(qx):

V1(px) = D1[J0(px) + f5Y0(px)], V2(qx) = D3[J0(qx) + f6Y0(qx)], (27)

where f5 = −J0(px1)/Y0(px1) and f6 = −J0(qx3)/Y0(qx3).
It should be noted that solutions (27) with boundary conditions (24) are orthogonal systems of func-

tions V1(px) and V2(qx). We demand that these systems be orthonormal, i.e.,
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x2∫
x1

x [V1(px)]2 dx = 1,

x4∫
x3

x [V2(qx)]2 dx = 1;

this yields the constants D1 and D2. Then,

D1 = 1/
√

I1, D2 = 1/
√

I2,

where

I1 = x2
2[J0(px2)+f5Y0(px2)]2/2+x2

2[J1(px2)+f5Y1(px2)]2/2−x2
1[J0(px1)+f5Y0(px1)]2/2−x2

1[J1(px1)+f5Y1(px1)]2/2;

I2 = x2
4[J0(qx4)+f6Y0(qx4)]2/2+x2

4[J1(qx4)+f6Y1(qx4)]2/2−x2
3[J0(qx3)+f6Y0(qx3)]2/2−x2

3[J1(qx3)+f6Y1(qx3)]2/2;

and J1 and Y1 are the first-order Bessel functions of the first and second kind, respectively. Thus, integral trans-
formations (22) are defined.

We apply the obtained integral transformations to relations (19)–(21):
x2∫

x1

x
[dZ1

dτ
− ∂2Z1

∂x2
− 1

x

∂Z1

∂x
+ s2Z1 − FP1(τ, x, s) − FP2(τ, x, s)

]
V1(px) dx = 0,

x4∫
x3

x
[dZ2

dτ
− ∂2Z2

∂x2
− 1

x

∂Z2

∂x
+ s2Z2 − FP1(τ, x, s) − FP2(τ, x, s)

]
V2(qx) dx = 0.

This yields

∂Z1

∂τ
−

x2∫
x1

x
[∂2Z1

∂x2
+

1
x

∂Z1

∂x

]
V1(px) dx + s2 Z1 − FP3(τ, p, s) = 0,

∂Z2

∂τ
−

x4∫
x3

x
[∂2Z2

∂x2
+

1
x

∂Z2

∂x

]
V2(qx) dx + s2 Z2 − FQ3(τ, q, s) = 0,

(28)

where

FP3(τ, p, s) =

x2∫
x1

x [FP1(τ, x, s)+FP2(τ, x, s)]V1(px) dx; FQ3(τ, q, s) =

x4∫
x3

x [FP1(τ, x, s)+FP2(τ, x, s)]V2(qx) dx.

After repeated integration by parts, the differential operators under the sign of integration in (28) transform
into

x2∫
x1

x
[∂2Z1

∂x2
+

1
x

∂Z1

∂x

]
V1(px) dx = FP4(τ, p, s) − p2 Z1,

x4∫
x3

x
[∂2Z2

∂x2
+

1
x

∂Z2

∂x

]
V2(qx) dx = FQ4(τ, q, s) − q2 Z2.

Equations (28) acquire the form

dZ1

dτ
+ (s2 + p2) Z1 = FP3(τ, p, s) + FP4(τ, p, s),

dZ2

dτ
+ (s2 + q2) Z2 = FQ3(τ, q, s) + FQ4(τ, q, s), (29)

where

FP4(τ, p, s) = x1
dV1

dx

∣∣∣
x1

Z1

∣∣∣
x1

− x2
dV1

dx

∣∣∣
x2

Z1

∣∣∣
x2

, FQ4(τ, q, s) = x3
dV2

dx

∣∣∣
x3

Z2

∣∣∣
x3

− x4
dV2

dx

∣∣∣
x4

Z2

∣∣∣
x4

. (30)

The initial conditions for Eqs. (29) can be obtained by applying integral transformations (12) and (22) to
relations (11):
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Z1

∣∣∣
τ=0

=

x2∫
x1

x
[
A1

y2∫
y1

T01(x, y)U1(sy) dy + A2

y4∫
y3

T02(x, y)U2(sy) dy
]
V1(px) dx,

Z2

∣∣∣
τ=0

=

x4∫
x3

x
[
A1

y2∫
y1

T01(x, y)U1(sy) dy + A2

y4∫
y3

T02(x, y)U2(sy) dy
]
V2(qx) dx.

The solutions of (29) are

Z1(τ, p, s) = exp [−(s2 + p2)τ ]
[ τ∫

0

(FP3(τ, p, s) + FP4(τ, p, s)) exp [(s2 + p2)τ ] dτ + Z1

∣∣∣
τ=0

]
,

Z2(τ, q, s) = exp [−(s2 + q2)τ ]
[ τ∫

0

(FQ3(τ, q, s) + FQ4(τ, q, s)) exp [(s2 + q2)τ ] dτ + Z2

∣∣∣
τ=0

]
.

Since the functions U1(sx), U2(sx), V1(py), and V2(qy) are orthonormal, the final solution of the problem is

T1(τ, r, z) =
∑
pi

( ∑
sj

Z1(τ, pi, sj)U1(sjy)
)
V1(pix), T2(τ, r, z) =

∑
qi

( ∑
sj

Z2(τ, qi, sj)U2(sjy)
)
V2(qix)

[the summation here is performed over positive roots pi, qi, and sj of (16) and (26)]. The passage from the
coordinates x and y to the coordinates r z can be performed by relations (6).

The obtained solution of the heat conduction problem for composite cylinder with first-kind boundary
conditions can easily be extended to cases with other boundary conditions. In particular, on different surfaces
of the cylinder heat transfer with different boundary condition is possible. In this case, in addition to boundary
conditions (3), (4), (9), and (10) in the initial equations and to boundary conditions (14) and (24), Eqs. (16) and
(26) for the characteristic numbers and expressions (20) and (30) will also suffer changes.

Consider, for instance, the following boundary conditions:
— on the bottom and top boundaries of the composite cylinder, second-kind conditions

λ1
∂T1

∂z

∣∣∣
z=c

+ g1(τ, r) = 0, λ2
∂T2

∂z

∣∣∣
z=e

− g2(τ, r) = 0;

— on the inner surface of the lower cylinder, second-kind condition

λ1
∂T1

∂r

∣∣∣
r=a

+ g3(τ, z) = 0,

— on the outer surface of the lower cylinder, third-kind condition

λ1
∂T1

∂r

∣∣∣
r=b

+ α1[T1

∣∣∣
r=b

− T1amb(τ, z)] = 0;

— on the inner surface of the upper cylinder, first-kind condition

T2

∣∣∣
r=a

= T2a(τ, z),

— on the outer surface of the upper cylinder, third-type condition

λ1
∂T2

∂r

∣∣∣
r=b

+ α2[T2

∣∣∣
r=b

− T2amb(τ, z)] = 0.

Here g1, g2, and g3 are the rates of heat generation; α1 and α2 are the heat-release coefficients on the surfaces of
the cylinder, and Tamb is the ambient temperature.

Then, the first and fourth equations in (15) acquire the form
C1 cos sy1 − C2 sin sy1 = 0, C3 cos sy4 − C4 sin sy4 = 0,

and Eq. (25) becomes
D1J1(px1) + D2Y1(px1) = 0,

D1[−λ1pJ1(px2) + α1J0(px2)] + D2[−λ1pY1(px2) + α1Y0(px2)] = 0,
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TABLE 1
Temperatures at the Axis of the Solid Cylinder

z, cm
T , ◦C

Method of [1] Present work

5.0 7.76 7.70
5.6 7.79 7.72
6.2 7.81 7.73
6.8 7.83 7.75
7.4 7.85 7.76
8.0 7.86 7.77
8.6 7.88 7.78
9.2 7.89 7.79
9.8 7.90 7.79

10.4 7.90 7.79
11.0 7.90 7.80

D3J0(qx3) + D4Y0(qx3) = 0,

D3[−λ2qJ1(qx4) + α2J0(qx4)] + D4[−λ2qY1(qx4) + α2Y0(qx4)] = 0.

Expressions (20) and (30) can be written as follows:

FP1(τ, x, s) = A1U1|y1g1(τ, x)/b1 + A2U2

∣∣∣
y4

g2(τ, x)/b2,

FP4(τ, p, s) = x1V1(px1) g3(τ, s)/λ1 − x2V1(px2)α1 T 1amb(τ, s)/λ1,

FQ4(τ, q, s) = x3
dV2

dx

∣∣∣
x3

T 2a(τ, s)
∣∣∣
x3

+ x4V2(qx4)
α2

λ2
T 2amb(τ, s),

where

g3(τ, s) =

y2∫
y1

U1(sy)g3(τ, y) dy; T 1amb(τ, s) =

y2∫
y1

U1(sy)T1amb(τ, y) dy;

T 2a(τ, s) =

y4∫
y3

U2(sy)T2a(τ, y) dy; T 2amb(τ, s) =

y4∫
y3

U2(sy)T2amb(τ, y) dy.

All other relations remain unchanged.
In numerical calculations, care should be taken to provide for sufficient accuracy in calculating characteristic

numbers and in observing the total number of eigenvalues, since both factors critically influence the final accuracy.
We performed a numerical comparison of the obtained analytical solution of the problem about nonstationary

heat transfer in a cylinder with the stationary solution of [1]. The temperatures at the axis of a solid cylinder
predicted for identical data in the present solution and in the solution of [1] are summarized in Table 1.

Tables 2 and 3 give the temperatures obtained by solving the nonstationary heat-transfer problem for a
hollow cylinder with the following boundary conditions:

— on the end surface of the cylinder, first-kind conditions (some surface temperatures T1 and T2 are set);
— on the inner cylindrical surfaces, second-kind condition (heat-release intensities g1 and g2);
— on the outer cylindrical surfaces, third-kind conditions (heat transfer with the ambient medium with

temperatures T1c and T2c and heat-transfer coefficients α1 and α2).
The rates of heat release in the volume of the cylinders are w1 and w2. The initial temperatures of the

cylinders are T10 and T20. The initial parameters are as follows: a = 10 cm, b = 15 cm, c = 5 cm, d = 8 cm,
e = 11 cm, χ1 = 4 cm2/sec, χ2 = 5 cm2/sec, λ1 = 4.65 W/(cm ·K), λ2 = 7 W/(cm ·K), α1 = 4.6 W/(cm2 ·K),
α2 = 2.33 W/(cm2 ·K), g1 = 1.16 W/cm2, g2 = 2.32 W/cm2, w1 = 0.29 W/cm3, w2 = 0.29 W/cm3, T1c = 1273 K,
T2c = 1273 K, T1 = 233 K, T2 = 233 K, T10 = 253 K, and T20 = 253 K.
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TABLE 2

Temperature Field in the Upper Part of the Composite Cylinder
0.5 h after the Beginning of the Process

T , ◦C

z, cm r, cm

10 11 12 13 14 15

11.0 −40.0 −40.0 −40.0 −40.0 −40.0 −40.0
10.4 151.2 65.4 34.0 21.8 17.8 18.4
9.8 250.4 140.5 86.9 64.3 56.6 56.7
9.2 313.5 193.4 126.0 95.7 85.1 84.6
8.6 355.6 228.3 152.0 116.5 104.1 103.3
8.0 389.4 248.5 165.9 127.6 114.4 114.5

TABLE 3

Temperature Field in the Lower Part of the Hollow Composite Cylinder
0.5 h after the Beginning of the Process

T , ◦C

z, cm r, cm

10 11 12 13 14 15

8.0 389.4 248.5 165.9 127.6 114.4 114.5
7.4 415.04 244.5 157.0 121.9 112.5 115.6
6.8 396.4 225.9 141.5 109.1 101.0 104.7
6.2 335.9 176.0 105.3 79.7 73.9 78.1
5.6 216.3 89.7 47.2 32.9 29.9 33.9
5.0 −40.0 −40.0 −40.0 −40.0 −40.0 −40.0

2
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Fig. 2. Time variation of temperature in the lower part cylinder (1), and upper
part of the cylinder (2).
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Figure 2 shows the curves of temperature versus time at the points [r = b, z = c + (d − c)/5] and [r = b,
z = e−(e−d)/5] in the upper and lower cylinders, respectively, from the beginning of the process to the establishment
of a stationary thermal state. It is seen that the temperature at these points first falls to some values and, then, rises.
This is explained by closeness of these points to the surfaces z = c and z = e with the temperature T1 = T2 = 233 K
and by the effect due to the internal heat release in the cylinders with the intensity w1 = w2 = 0.29 W/cm3. The
level to which the temperature falls additionally depends on thermophysical coefficients of the two materials.
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